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Modeling the Parker instability in a rotating plasma screw pinch
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We analytically and numerically study the analogue of the Parker (magnetic buoyancy) instability in

a uniformly rotating plasma screw pinch confined in a cylinder. Uniform plasma rotation is imposed

to create a centrifugal acceleration, which mimics the gravity required for the classical Parker

instability. The goal of this study is to determine how the Parker instability could be unambiguously

identified in a weakly magnetized, rapidly rotating screw pinch, in which the rotation provides an

effective gravity and a radially varying azimuthal field is controlled to give conditions for which the

plasma is magnetically buoyant to inward motion. We show that an axial magnetic field is also

required to circumvent conventional current driven magnetohydrodynamic (MHD) instabilities such

as the sausage and kink modes that would obscure the Parker instability. These conditions can be

realized in the Madison plasma Couette experiment (MPCX). Simulations are performed using the

extended MHD code NIMROD for an isothermal compressible plasma model. Both linear and

nonlinear regimes of the instability are studied, and the results obtained for the linear regime are

compared with analytical results from a slab geometry. Based on this comparison, it is found that in

a cylindrical pinch, the magnetic buoyancy mechanism dominates at relatively large Mach numbers

(M> 5), while at low Mach numbers (M< 1), the instability is due to the curvature of magnetic field

lines. At intermediate values of Mach number (1<M< 5), the Coriolis force has a strong stabilizing

effect on the plasma. A possible scenario for experimental demonstration of the Parker instability in

MPCX is discussed. VC 2012 American Institute of Physics. [doi:10.1063/1.3684240]

I. INTRODUCTION

The Parker (or the magnetic buoyancy) instability arises

in a stratified plasma, which is partially supported against

gravity by a magnetic field. It was originally proposed by

Parker that the magnetic buoyancy resulting in this system is

a mechanism for the formation of sunspots.1 Since then, the

theory of the magnetic buoyancy instability has been devel-

oped in numerous papers2–8 and extended to include various

effects, such as pressure anisotropy,9 double diffusivity,10–14

rotation,11–13,15,16 microturbulence,16 line tying,17 and non-

uniform gravity.18 Full 3-D magnetohydrodynamic (MHD)

simulations of the magnetic buoyancy instability have been

performed in the solar context,19–24 including some that

explore the effects of double diffusivity.25 At present time,

this instability is accepted in the astrophysical community as

the driver of magnetic activity in objects ranging from stars

to accretion disks and galaxies.26 In the Sun, the Parker

instability may even play a role in the global-scale magnetic

dynamo.23,27–29

Despite its important role in understanding the dynamics

of the astrophysical magnetic fields, no direct experimental

investigation of the Parker instability has been performed so

far. The difficulty is in creating the proper conditions for this

instability and, especially, in imitating relatively strong grav-

ity in plasma. Nonetheless, the Parker instability could be

realized in experiments with rapidly rotating plasmas, where

the role of effective gravity is played by centrifugal accelera-

tion. This possibility of exciting the Parker instability was

pointed out in theoretical studies devoted to centrifugally

confined plasmas.30,31 However, the instability was not

observed in the corresponding experiment. The reason lies,

perhaps, in the profiles of magnetic field and rotation, which

are optimized for plasma confinement and, therefore, for

suppressing the instabilities. Thus, the experimental observa-

tion of the Parker instability is still lacking.

Our present paper is motivated by the recent results

from the Madison plasma Couette experiment (MPCX)

showing a controllable plasma rotation.32 The MPCX has

been specifically designed to study phenomena associated

with plasma flows.33 A unique experimental setup is imple-

mented in MPCX: a multicusp magnetic field localized near

the walls of the cylindrical vessel provides plasma confine-

ment and along with the applied electric field from the wall

electrodes drives the prescribed azimuthal flows (Fig. 1).

Different types of flows potentially achievable in the MPCX

can be used for investigation of such phenomena as magnetic

dynamo34 and magnetorotational instability (MRI).35

The goal of this theoretical study is to determine the

plasma parameters, flows, and magnetic fields required for

excitation of the Parker instability in a cylindrical geometry

and to demonstrate the possibility of obtaining such instabil-

ity in the MPCX. Consideration is performed in the frame-

work of isothermal compressible MHDs, which appears to

be a good approximation for the MPCX plasma. The numeri-

cal results reported in the paper are obtained using the

extended MHD code NIMROD,36 which can accurately

model both linear and nonlinear plasma dynamics in a spe-

cific geometry for realistic experimental conditions. The

NIMROD code has been used previously to study dynamo

action34 and magnetorotational instability35 in MPCX.

In the paper, we follow the convention of Ref. 26 and

use the term “Parker instability” to denote an undular mode
of magnetic buoyancy instability, in which the wave vector
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has a component parallel to the magnetic field and, therefore,

the perturbed magnetic field lines are bent. This mode is

opposed to an interchange mode, in which the wave vector is

perpendicular to the magnetic field and perturbations do not

bend the field lines. It turns out that in a plasma screw pinch

with rigid-body rotation, the stability boundaries are deter-

mined by the modes with non-zero parallel component of the

wave vector. These field-bending modes are of primary inter-

est in the paper.

The detailed analysis of the Parker instability was per-

formed by Newcomb.2 He considered a perfectly conducting

plasma in a varying with height horizontal magnetic field

and a uniform vertical gravitational field [similar to configu-

ration shown in Fig. 2(a) for X> 0, with gravity acting in the

positive X direction G¼G0ex, and magnetic field having the

only component By(X)]. The equilibrium force balance is

d

dX
Pþ

B2
y

8p

 !
¼ qG0; (1)

where P is the plasma pressure and q is the plasma density.

According to Newcomb, the system is unstable with respect

to the Parker instability if for some perturbation nx, the

energy integral is negative,

W ¼ 1

2

ð
K2

y B2
y

4pðK2
y þ K2

z Þ
@nx

@X

���� ����2þK2
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dq
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� q2G2
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jnxj2

�
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Here, c is the adiabatic index, Ky and Kz are components of

the wave vector of the perturbation. The first two terms in

the integral are always positive and represent the stabilizing

effect of magnetic field lines bending. The instability can

arise only when the third term is negative. In an isothermal

plasma with adiabatic index c¼ 1 and P ¼ qC2
s , where Cs is

the average sound speed, Eq. (2) is reduced to

W ¼ 1

8p

ð
K2

y B2
y

K2
y þ K2

z

@nx

@X

���� ����2þK2
y B2

y jnxj2
 

� G0

2C2
s

dB2
y

dX
jnxj2

!
d3r < 0; (3)

which means that the magnetic pressure must increase in the

direction of gravity for the system to be unstable. A simple

physical interpretation of this is given by Acheson.13 In equi-

librium, the magnetic pressure supports more mass against

gravity than it would be possible in its absence. This extra

mass, expressed in the form of magnetic pressure, enters the

destabilizing third term in Eq. (3). The situation is somewhat

analogous to the Rayleigh-Taylor instability, in which the

heavy fluid lies on top of a lighter one.37

FIG. 1. (Color online) MPCX: (a) sketch

and magnetic field amplitude; (b) typical

radial profile of cusp magnetic field; (c)

electrode configuration near wall. Rings of

permanent magnets of alternating polarity

line the inside of the cylinder with their

poles oriented normally to the walls. Elec-

trodes are placed between the magnets.

The azimuthal velocity at the boundary

can be adjusted through variation of the

E�B drift by changing the voltages

between electrodes. Helmholtz coils (HC)

are used to induce external (mainly axial)

magnetic field. Removable center core

(CC) is shown, but it will not be used in

the Parker experiment. Reprinted with per-

mission from F. Ebrahimi, B. Lefebvre,

C. B. Forest, and A. Bhattacharjee, Phys.

Plasmas 18, 062904 (2011). Copyright

2011, American Institute of Physics.

FIG. 2. Geometries of the problem: (a) slab and (b) cylinder.
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As seen from Eq. (3), two key elements are necessary for

driving the magnetic buoyancy instability in plasma: gravity

and magnetic field. Below, we outline some specific condi-

tions, which these elements should satisfy in the experiment.

(1) Gravity (rotation). Centrifugal acceleration arising in a

rotating plasma is the efficient way to mimic gravity in the

experiment. Obvious disadvantages of such an approach

are the possible excitation of unwanted instabilities related

to the rotation profile, such as Rayleigh instability,

Kelvin-Helmholtz instability, and MRI. A further conse-

quence of rotation is that we might expect the Coriolis

force to stabilize some motions. If we assume that the rota-

tion is uniform in the axial direction, then the most limit-

ing condition on radial profile of angular velocity X(R)

comes from the MRI: to have a stable rotation in the pres-

ence of axial magnetic field, one needs to satisfy @(X2)/

@R� 0.38,39 We consider here only a case of rigid-body

rotation with X(R)¼X0¼ const corresponding to effec-

tive centrifugal gravity G ¼ X2
0Rer. Such plasma rotation

has been successfully obtained in recent MPCX runs.32

(2) Magnetic field. Only internal (i.e., induced by currents

flowing in plasma) magnetic fields can be potentially

buoyant. This is because magnetic fields contribute to

the plasma force balance only if the corresponding Lor-

entz force is not zero. Evidently, externally applied fields

do not have this property, so they alone cannot induce

Parker instability. In addition, the magnitude of the field

(magnetic pressure) has to be increasing in the direction

of gravity. One of the feasible ways to create such mag-

netic field in the MPCX is to drive axial current through

the plasma, so that azimuthal field is induced. However,

the curvature of a purely azimuthal magnetic field makes

plasma susceptible to the so-called “sausage” instability

(with azimuthal mode number m¼ 0).40 This is obvi-

ously unwanted for the Parker instability experiment, as

this instability may mask the buoyancy instability. To

avoid this complication, one can add an external axial

magnetic field (by driving current in the Helmholtz coils

(HC), see Fig. 1); this leads to a screw pinch with a heli-

cal magnetic field. Such magnetic field is also unstable

to parasitic kink instabilities,40 but as we will show, the

regions of plasma parameters corresponding to the kink

modes and the Parker instability are well separated, and

these two instabilities can be easily distinguished in the

experiment. In the following, we consider only a case

with uniform axial current density (which is consistent

with assumptions of uniform resistivity profile in isother-

mal plasma) and uniform axial magnetic field, so the ra-

dial profiles of field components are Bu (R)¼BaR/a and

Bz(R)¼Bz0¼ const, where Ba and Bz0 are constant and a
is the radius of the pinch (Fig. 2). Thus, the main object

of our study is the plasma screw pinch with constant

pitch and rigid-body rotation.

We note here that unfavorable curvature of the helical

field resulting from cylindrical geometry of the screw pinch

can lead to development of unwanted kink instabilities. To

tell whether the instability is due to kink modes or magnetic

buoyancy, we also perform the stability analysis of analo-

gous plasma configuration in a slab geometry, where the

effects associated with the field curvature are absent and

only magnetic buoyancy can play a role. Then, we compare

and contrast the results obtained in the two geometries.

The structure of the paper is as follows. In Sec. II, we

describe the model used in our study. In Sec. III, the Parker

instability is investigated in a slab geometry and the stability

boundaries are obtained. In Sec. IV, the linear stability anal-

ysis of a plasma screw pinch with rigid-body rotation is per-

formed in a geometry of periodic cylinder and the region of

parameters appropriate for the Parker instability is deter-

mined. In Sec. V, we study the more realistic case of a

bounded cylinder with inclusion of dissipative effects. With

NIMROD simulations, we explore the nonlinear dynamics of

the Parker instability as well. In Sec. VI, we summarize and

discuss the possible scenarios for experimental demonstra-

tion of the Parker instability in the MPCX.

II. MODEL

We consider the stability problem for two equivalent

plasma configurations in two different geometries—slab and

cylinder (Fig. 2). This is done to distinguish the Parker insta-

bility in the cylinder from kink instabilities related to the

field curvature, as in our slab geometry, there is no curvature

in the imposed magnetic field. The corresponding equilib-

rium fields and gravity are given by

Slab : Veq ¼ 0; Beq ¼ Ba
X

a
ey þ Bz0ez; G ¼ X2

0Xex;

(4)

Cylinder : Veq ¼ X0Reu; Beq ¼ Ba
R

a
eu þBz0ez; G¼ 0:

(5)

Note that the gravity in slab geometry is chosen in such way

to be analogous to the centrifugal acceleration in cylinder. In

both cases, the background plasma is generally stratified; the

exact forms of the density profiles are determined by the

force balance equation and will be given in Secs. III and IV

for the respective cases.

As a frame-work for our study, we use isothermal com-

pressible MHD model, which in nondimensional form is

@n

@s
¼ �r � ðnvÞ; (6)

n
@v

@s
¼ �nðv � rÞv� b

2
rnþ ðr � bÞ � bþ ng

þ � r2vþ 1

3
rðr � vÞ

� �
; (7)

@b

@s
¼ r� ðv� bÞ þ gr2b: (8)

As the motions are themselves isothermal, no energy equa-

tion is solved. This corresponds to the limit where thermal

conduction is much faster than plasma motions, which is the

appropriate limit for MPCX. Magnetically buoyant motions

in this system correspond to the limit of doubly diffusive
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motions,13 and as such, these isothermal motions are likely

to be maximally unstable to magnetic buoyancy. In Eqs.

(6)–(8), the unit of length is the characteristic size of the sys-

tem a (half-width of the slab layer, radius of the cylinder), s,

n, v, b, and g stand for normalized time, density, velocity,

magnetic field, and gravity, respectively

s ¼ VA

a
t; n ¼ q

q0

; v ¼ V

VA
; b ¼ B

Bz0

; g ¼ aG

V2
A

; (9)

where VA ¼ B0z=
ffiffiffiffiffiffiffiffiffiffi
4pq0

p
is the Alfven velocity based on the

externally applied magnetic field Bz0 (vertical in slab and

axial in cylinder) and q0 is the average mass density. The

thermal to magnetic pressure ratio b, dimensionless viscosity

�, and resistivity g are defined as

b ¼ 8pP0

B2
z0

; � ¼ l
q0aVA

; g ¼ c2

4praVA
;

where P0 is the average thermal pressure, l is the dynamic

viscosity, r is the plasma conductivity, and c is the speed of

light; these parameters are assumed to be constant in time

and uniform in space. For complete description of equilib-

rium configurations, we also introduce Mach number M and

pinch parameter h

M ¼ V0

Cs
; h ¼ Ba

Bz0

;

where V0¼ aX0 is the velocity at the cylindrical boundary

(peak driving velocity), Cs ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
P0=q0

p
is the average plasma

sound speed with adiabatic index c¼ 1 for isothermal model,

and Ba is the boundary value of the magnetic field compo-

nent, which is induced by vertical (axial) current in plasma.

The MPCX plasma parameters can be varied in a wide

range allowing experimentalists a great flexibility in choos-

ing the regimes of operation (Table I). The dependencies of

the non-dimensional quantities used in our study on the

plasma parameters are presented below: thermal to magnetic

pressure ratio

b � 8pP0

B2
z0

¼ 40
N0½1018m�3�ðTe½eV� þ Ti½eV�Þ

B2
z0½G�

; (10)

normalized viscosity (inverse fluid Reynolds number based

on Alfven velocity)

� � l
q0aVA

¼ 0:88
T

5=2
i ½eV�

a½m�Bz0½G�N1=2
0 ½1018m�3�k

; (11)

normalized resistivity (inverse Lundquist number)

g � c2

4praVA
¼ 0:019

N
1=2
0 ½1018m�3�l1=2

i k

a½m�Bz0½G�T3=2
e ½eV�

; (12)

Mach number

M � V0

Cs
¼ 0:10

V0½km=s�l1=2
i

ðTe½eV� þ Ti½eV�Þ1=2
; (13)

where k is the Coulomb logarithm (typically k� 10� 20).

Equations (11) and (12) are derived from the Braginskii

equations for a plasma with singly charged ions in a weak

magnetic field.41 The typical values of these quantities in the

MPCX are also presented in Table I.

Note that the cylindrical equilibrium configuration in

Eq. (5) contains neither the multicusp magnetic field nor the

boundary layers present in the real experiment. In our study,

we do not focus on the details of the plasma driving and sim-

ply assume that the equilibrium rigid-body plasma rotation is

given a priori. This assumption is consistent with recent

observations showing such rotation in the bulk of the MPCX

plasma.32

Equations (6)–(8) must be supplemented with boundary

conditions. Here, we assume impenetrable, perfectly con-

ducting walls, so the normal components of the velocity and

the time-varying magnetic field vanish at the boundary C

vnjC ¼ 0; ~bnjC ¼ 0: (14)

These conditions are enough in the ideal MHD cases (when

g¼ �¼ 0) considered in Secs. III and IV. In the dissipative

MHD case (when g= 0 and �= 0) considered in Sec. V,

two additional conditions are required, namely, no-slip con-

dition for the tangential velocity and absence of the tangen-

tial time-varying electric field

vtjC ¼ ðveqÞtjC; eEtjC ¼ gðr � ebÞtjC ¼ 0; (15)

where veq is the equilibrium velocity, and tangential electric

field at the boundary is determined only by the correspond-

ing component of the current. In the following sections, we

study the stability of the equilibrium configurations [Eqs. (4)

and (5)] in the frame-work of the isothermal MHD model

[Eqs. (6)–(8)] with appropriate boundary conditions given by

Eqs. (14) and (15).

III. SLAB: IDEAL MHD STABILITY

First, we consider the ideal MHD stability (no dissipa-

tion, �¼ g¼ 0) of a stratified magnetized plasma in a slab ge-

ometry as shown in Fig. 2(a). In this periodic slab geometry,

there are no Coriolis forces and curvature effects associated

TABLE I. Parameters of MPCX.

Quantity Symbol Value Unit

Radius of cylinder a 0.5 m

Height of cylinder H 1 m

Peak driving velocity V0 0–20 km/s

Axial magnetic field Bz0 0–100 G

Average number density N0 1016–1017 m�3

Electron temperature Te 2–10 eV

Ion temperature Ti 0.2–2 eV

Ion species H, He, Ne, Ar —

Ion mass li 1, 4, 20, 40 amu

Thermal/magnetic pressure ratio b �8.8� 10�5 —

Normalized viscosity � �2.1� 10�4 —

Normalized resistivity g �1.2� 10�5 —

Mach number M 0�8.5 —
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with the imposed magnetic field that will be present in cylin-

drical geometries, so the magnetic buoyancy is the only possi-

ble destabilizing mechanism. The normalized equilibrium

fields and gravity in this case are

veq ¼ 0; beq ¼ hxey þ ez; g ¼ gðxÞex ¼
b
2

M2xex: (16)

The layer is bounded in the x direction (�1< x< 1) and peri-

odic in y and z. The x component of the force balance results

in an equation for the equilibrium density profile neq(x)

b
2

dneq

dx
¼ b

2
M2xneq � h2x: (17)

Taking into account that the average normalized density is 1,

we find the solution to Eq. (17) in the form

neqðxÞ ¼ 1� 2h2

bM2

� � ffiffiffi
2
p

MeM2x2=2ffiffiffi
p
p

erfiðM=
ffiffiffi
2
p
Þ
þ 2h2

bM2
; (18)

where erfi is the so-called imaginary error function defined

via standard error function erf as

erfi ðzÞ � �i erf ði zÞ ¼ 2ffiffiffi
p
p
ðz

0

et2 dt:

The density profiles corresponding to Eq. (18) are shown in

Fig. 3(a) for several values of Mach number.

We linearize Eqs. (6)–(8) near the equilibrium given by

Eqs. (16) and (18) and introduce the plasma displacement

vector n(x, y, z)e�ixs to describe the perturbations of the

physical quantities

dn ¼ �r � ðneqnÞ; dv ¼ �ixn; db ¼ r� ðn� beqÞ:

The linearized equation for the displacement n is

�x2neqn ¼ F½n� � � b
2
rdnþ ðr � dbÞ � beq

þ ðr � beqÞ � dbþ dng: ð19Þ

Due to periodicity of the slab in y and z, we can assume n

depends on y and z as eikyyþikzz and consider stability of

modes with different wave numbers (ky, kz) separately.

The boundary conditions on n in the x direction follow from

Eq. (14):

nxjx¼61 ¼ 0: (20)

Equations (19) and (20) constitute an eigenvalue problem.

In this relatively simple system, without solving the full

eigenvalue problem, one can obtain the stability criterion

analytically using the energy principle.42 It states that the

static (without flows) ideal MHD system is linearly stable if

and only if the potential energy of the perturbation,

W ¼ � 1

2

ð
n	 � F½n�d3r; (21)

is positive for all displacements n satisfying the boundary

conditions in the problem (provided that the operator F[n] is

self-adjoint). Here, displacements are assumed to be complex

in general and the star denotes the complex conjugation.

A general expression for the potential energy of the per-

turbation with wave number k¼ (ky, kz) in a slab is

W ¼ 1

2

ð
b
2

neq þ b2
eq

� �
jr � nj2 þ F2jnj2

�
þ iF ðbeq � n	Þðr � nÞ � ðbeq � nÞðr � n	Þ

� �
þ gneq nxðr � n	Þ þ n	xðr � nÞ

� �
þ g

dneq

dx
jnxj2

�
d3r;

ð22Þ

where F ¼ k � beq ¼ kz þ kyhx characterizes the component

of the wave vector parallel to the equilibrium field. The func-

tional given by Eq. (22) is self adjoint, so the energy princi-

ple applies.

Assuming that F is not identically equal to zero on the

interval �1< x< 1, we minimize W with respect to ny and

nz. The system is unstable if for some nx, the minimized

potential energy is negative, i.e.,

Wmin ¼
1

2

ð
F2

k2
y þ k2

z

@nx

@x

���� ����2þF2jnxj2 �M2h2x2jnxj2
 !

d3r < 0;

(23)

in agreement with Ref. 2 and Eq. (3). Note that the only

destabilizing term in Eq. (23) is due to joint effect of gravity

FIG. 3. Equilibrium density profiles for b¼ 8, pinch parameter h¼ 2, and

different values of Mach number M: (a) in slab [Eq. (18)] and (b) in cylinder

[Eq. (28)].
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and plasma current (or magnetic pressure gradient); this

instability condition does not depend on the density profile

explicitly. For modes with ky¼ 0 (which are the analogue of

axisymmetric modes with m¼ 0 in a cylinder), the instability

condition is simplified to

h2M2 > k2
x þ k2

z ; (24)

where kx is the effective wave number in x direction. Accord-

ing to Eq. (24), the system becomes unstable when magnetic

buoyancy (the term on the left-hand side) overcomes mag-

netic tension (the term on the right-hand side).

This analytical consideration is confirmed by the results

of the numerical solution to eigenvalue problem [Eqs. (19)

and (20)] presented in Figs. 4(I-a)–4(I-c). As one can see

from Fig. 4(I-a), the behavior of the marginal stability curves

are similar for all values of ky in the region of large Mach

numbers M> 5. In that region, the scaling for the critical

(required for the instability) value of the pinch parameter is

hcr / M�1; (25)

which is in agreement with Eq. (24). Thus, we can conclude

that such scaling is a universal signature of the Parker insta-

bility in a slab geometry with equilibrium given by Eqs. (16)

and (18). As follows from Fig. 4(I-b), when h> hcr, the

instability develops on the Alfven time scale tA¼ a/VA

[growth rate c¼ Im x is normalized according to Eq. (9)].

From Fig. 4(I-c), we see that the critical pinch parameter hcr

decreases for higher wave numbers ky (shorter wave lengths).

FIG. 4. (Color online) Results of numerical solution to eigenvalue problems for b¼ 8 in (I) slab with kz¼�p/2, (II) periodic cylinder with kz¼�p/2, and (III)

bounded cylinder with viscosity �¼ 0.01 and resistivity g¼ 0.01: (a) marginal stability curves on the plane of Mach number–pinch parameter (M� h); (b)

growth rate of instability c¼ Im x as function of pinch parameter h for Mach number M¼ 6; and (c) critical pinch parameter hcr as function of ky (in slab) or

m (in cylinder) for different Mach numbers M (indicated next to the curves).
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This result appears only in ideal MHD consideration; as we

show below, in dissipative MHD system, the modes with

shorter wave lengths are stabilized.

IV. PERIODIC CYLINDER: IDEAL MHD STABILITY

In this section, we study an ideal MHD stability (no

dissipation, �¼ g¼ 0) of a rotating plasma in a cylindrical

screw pinch geometry shown in Fig. 2(b). In this geometry

of a periodic cylinder, the Coriolis forces and curvature

forces associated with the imposed magnetic field are self-

consistently included. The normalized equilibrium fields and

gravity in this case are

veq ¼ x0reu ¼
ffiffiffi
b
2

r
Mreu; beq ¼ hreu þ ez; g ¼ 0:

(26)

Plasma is bounded by a rigid, perfectly conducting cylindri-

cal wall at r¼ 1. To simplify the analysis, we assume that

the cylinder is periodic in z (axial) directions. The equilib-

rium density is determined from the force balance equation

b
2

dneq

dr
¼ b

2
M2rneq � 2h2r: (27)

The solution is

neqðrÞ ¼
M2

2
1� 4h2

bM2

� �
eM2r2=2

eM2=2 � 1
þ 4h2

bM2
; (28)

where we have taken into account that the average normal-

ized density is 1. Samples of the density profiles given by

Eq. (28) are shown in Fig. 3(b).

We linearize Eqs. (6)–(8) near the equilibrium given by

Eqs. (26) and (28) and consider all perturbations in a refer-

ence frame rotating with equilibrium angular velocity

x0 ¼
ffiffiffiffiffiffiffiffi
b=2

p
M. Since the system is periodic in azimuthal and

axial directions, we take the dependences of perturbations on

u and z as eimuþikzz and study the stability of modes with dif-

ferent (m, kz) separately. The transition to a rotating reference

frame mathematically corresponds to changing the eigenfre-

quency of a mode with given m according to the rule:

�x ¼ x� imx0, where �x and x are the eigenfrequencies in

the rotating and non-rotating reference frames, respectively.

Introducing the plasma displacement vector nðr;u; zÞe�i �xs,

we then obtain

dn ¼ �r � ðneqnÞ; dv ¼ �i �xn; db ¼ r� ðn� beqÞ;

i.e., the expressions for perturbations of the physical quanti-

ties in terms of n are exactly the same as in a static case. In

the rotating reference frame, the linearized equation for the

displacement vector n is now

� �x2neqnþ 2neqx0 � dv ¼ F½n� � � b
2
rdn

þ ðr � dbÞ � beq þ ðr � beqÞ � dbþ dnx2
0rer; ð29Þ

where x0¼x0ez. The boundary conditions on n follow from

Eq. (14):

nrjr¼1 ¼ 0: (30)

Comparing Eqs. (19) and (29), we see that in a system with

plasma rotation, there is a new effect due to the Coriolis

force (the term with dv), while the centrifugal acceleration

plays the role of gravity.

Due to the presence of the Coriolis force in Eq. (29), the

energy principle does not give a stability criterion in this

case. However, as shown in Ref. 43, it still can be applied to

obtain a sufficient stability condition. Neglecting the Coriolis

term, we write the potential energy of the perturbation with

wave vector k¼ (m/r, kz) as

W ¼ 1

2

ð
b
2

neq þ b2
eq

� �
jr � nj2 þ F2jnj2

�
þ iF ðbeq � n	Þðr � nÞ � ðbeq � nÞðr � n	Þ

� �
þ b

2

dneq

dr
nrðr � n	Þ þ n	r ðr � nÞ
� �

þ x2
0r

dneq

dr
jnrj2

þ 2ihF nun	r � n	unr

� 		
d3r; (31)

where F ¼ k � beq ¼ kz þ mh. Assuming that F= 0, we min-

imize W with respect to nu and nz. The result is that the sys-

tem can become unstable if for some nr

Wmin ¼
1

2

ð
F2

k2r2

@ðrnrÞ
@r

���� ����2þF2jnrj2 � 2M2h2r2jnrj2
 

� 4k2
z hðhk2r2 þ mFÞ

k4r2
jnrj2

�
d3r < 0; (32)

where k2 ¼ m2=r2 þ k2
z . Note that there are two possible

destabilizing mechanisms now: one of them is the same as in

the slab geometry and is due to the joint effect of rotation

and plasma current. This is the Parker instability. The second

instability, absent in the slab geometry, is solely due to the

plasma current and can exist in the system without rotation.

These are “sausage” or kink instabilities, depending on the

azimuthal wave number m. For axisymmetric modes with

m¼ 0, Eq. (32) yields the instability condition in the follow-

ing form:

2h2ðM2 þ 2Þ > k2
r þ k2

z ; (33)

where kr is some effective radial wave number. One can see

from Eq. (33), that at large Mach numbers M
 1, the criti-

cal value of the pinch parameter scales as hcr / 1=M, which

is identical to Eq. (25). This suggests that the Parker destabi-

lization mechanism dominates in the cylindrical pinch when

M
 1 if the Coriolis force is ignored.

To account for the Coriolis force, we solve numerically

the full eigenvalue problem given by Eqs. (29) and (30). The

results for modes with different azimuthal mode numbers m
are presented in Figs. 4(II-a)–4(II-c) and 5. It appears that the

Coriolis force plays a significant stabilizing role in the range

of Mach numbers 1<M< 5. This stabilizing effect is ampli-

fied even more with the increase of b (Fig. 5). We also note

the existence of unstable “windows” on the plane of parame-

ters (M, h) for modes with m� 2. Such unstable “windows”

have been found in a similar screw pinch configuration with
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rigid plasma rotation in Ref. 44; however, the model used in

that paper was not isothermal and equilibrium density was

assumed constant. Our main finding is that the marginal sta-

bility curves for different m follow the tension-mediated

Parker instability scaling given by Eq. (25) when Mach num-

ber M> 5 [Fig. 4(II-a)]. At these values of Mach number, the

primary destabilizing mechanism in the system is due to the

Parker instability.

As one can see from Fig. 4(II-b), for non-axisymmetric

modes with m> 0, the growth rate of the instability becomes

zero at some value of pinch parameter h0 above the critical

one, h0> hcr. This value is determined by the condition F¼
kzþmh0¼ 0, i.e., the corresponding mode is a pure inter-

change mode (perturbations do not bend the magnetic field

lines). Such mode is a consequence of the assumed periodic-

ity in z; it does not appear in the bounded cylinder (Sec. V),

where characteristic wave number kz cannot be introduced.

Fig. 4(II-c) shows that similar to the results in slab geometry,

the critical pinch parameter hcr decreases with increasing az-

imuthal mode number m when Mach numbers M� 5.

V. BOUNDED CYLINDER: DISSIPATIVE MHD
STABILITY AND NONLINEAR DYNAMICS

In this section, we investigate the MHD stability of a

rotating plasma screw pinch in the more realistic and experi-

mentally relevant geometry of a bounded cylinder [Fig. 2(b)]

and assuming finite dissipation (here, we take �¼ g¼ 0.01).

The equilibrium configuration is the same as in the ideal

case in Sec. IV and given by Eqs. (26) and (28). The stability

study is performed numerically using the NIMROD code.

Our first step in this stability study is to solve the eigen-

value problem corresponding to linearized Eqs. (6)–(8) with

boundary conditions given by Eqs. (14) and (15). Using NIM-

ROD, we solve the initial value problem and determine the

growth rate of the fastest eigenmode. Since NIMROD uses

the Fourier decomposition in periodic u-direction,36 and the

Fourier harmonics are all decoupled in the linearized equa-

tions, we are able to determine the growth rates for all azi-

muthal mode numbers m. These results are presented in Figs.

4(III-a)–4(III-c).

Fig. 4(III-a) shows the calculated stability boundaries on

the plane of Mach number–pinch parameter (M� h). The

marginal stability curves for different m follow the tension-

mediated Parker instability scaling given by Eq. (25) when

Mach number M> 5. In the region of small Mach numbers

M< 1, the critical pinch hcr is practically independent of M.

Instabilities in this region of parameters are due to the curva-

ture of the magnetic field lines and take the form of axisym-

metric “sausage” modes or non-axisymmetric kink modes.

At medium values of Mach number 1<M< 5, the Coriolis

force has a stabilizing effect on both types of instabilities.

The dependence of the Parker instability growth rate c on the

pinch parameter h for Mach number M¼ 6 and different

FIG. 5. Marginal stability curves in cy-

lindrical system calculated numerically

from the eigenvalue problem given by

Eqs. (29) and (30). Results for different

azimuthal modes are shown: (a) m¼ 0,

(b) m¼ 1, (c) m¼ 2, and (d) m¼ 3. Solid

line denotes the case in which the Coriolis

force is ignored; dashed line is for b¼ 4;

dash-dotted line is for b¼ 8. In all cases,

the axial wave number is kz¼�p/2.
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azimuthal numbers m are presented in Fig. 4(III-b). Accord-

ing to these results, the characteristic time of the instability

is the Alfvenic time scale tA¼ a/VA.

Fig. 4(III-c) shows the dependence of the critical pinch

parameter hcr on the azimuthal mode number m for several

Mach numbers M, which are in the Parker instability region.

We note that for every M> 5, the critical pinch parameter

hcr reaches a minimum for modes with m¼ 4� 5. These

modes determine the threshold of the Parker instability. This

is a consequence of two counteracting effects: the decrease

of hcr with increasing m when dissipation can be neglected

[as seen in Figs. 4(I-c) and 4(II-c) for ideal cases] and the

increase of hcr for modes with larger m (shorter wave

lengths) due to viscous and ohmic dissipation.

Next, we report the results of 3-D simulations of the non-

linear development of the Parker instability. We solve the full

system [Eqs. (6)–(8)] with the following parameters: M¼ 6,

h¼ 1, b¼ 8, and �¼ g¼ 0.01; at these parameters, the sys-

tem is unstable and the destabilization mechanism is domi-

nated by the Parker instability. Fig. 6 demonstrates the time

dynamics of the kinetic and magnetic energies in the simula-

tions. After the initial linear phase of the instability, the ener-

gies of the non-axisymmetric parts reach some average level.

The back reaction of the non-axisymmetric distortions on the

initial equilibrium configuration leads to its modification.

Such modifications in axisymmetric parts of the density and

magnetic pressure are shown in Fig. 7. As expected, the non-

linear dynamics of the instability eliminates its original cause:

plasma (“heavy” fluid) goes down along the effective centrif-

ugal gravity, while the magnetic field (“light” fluid) rises up

against the gravity. This situation in many aspects is similar

to the well known Rayleigh-Taylor instability.

VI. CONCLUSION

We have performed the stability study of the analogue of

the Parker instability (magnetic buoyancy) in a rigidly rotat-

ing plasma column with constant-pitch magnetic configura-

tion. The plasma rotation creates a centrifugal acceleration,

which imitates the gravity required for the classical Parker

instability. To distinguish this instability from instabilities

related to magnetic field line curvature, we have also consid-

ered the analogous plasma configuration in a slab geometry.

Applying the energy principle and solving the eigenvalue

problem in cylindrical geometry, we found the marginal sta-

bility curves in the plane of Mach number–pitch parameter

FIG. 6. (Color online) Time dynamics of (a) kinetic Ekin and (b) magnetic

Emag energies of different azimuthal modes (labeled) in nonlinear run with

Mach number M¼ 6, pinch parameter h¼ 1, thermal to magnetic pressure

ratio b¼ 8, viscosity �¼ 0.01, and resistivity g¼ 0.01.

FIG. 7. (Color online) Relative deviations in (r, z) plane of the axisymmet-

ric parts of (c) density and (d) magnetic pressure from their respective equi-

librium profiles (a) and (b) during the nonlinear phase of the Parker

instability. Solid black lines in (c) and (d) denote the points where deviation

is zero. Arrows show the direction of the centrifugal acceleration gcf. Calcu-

lations are done with parameters listed in caption of Fig. 6.
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(M� h). It appears that the Parker instability determines the

stability thresholds for relatively large values of Mach number

M> 5; the scaling of the critical (required for instability)

pinch parameter in this case is hcr / M�1 [Eq. (25)]. The

mechanism of the Parker instability has some analogy with

the Rayleigh-Taylor instability: magnetic field (“light” fluid)

supporting plasma (“heavy” fluid) against the gravity is poten-

tially buoyant and tends to rise up.

At small values of Mach numbers M< 1, the instability

in the system is primarily due to the magnetic field line cur-

vature (“sausage” for azimuthal number m¼ 0 or kink insta-

bilities for m= 0).

At medium values 1<M< 5, the Coriolis force stabil-

izes both types of instabilities; this effect depends on plasma

b, having a stronger stabilization when b is larger. The Cori-

olis stabilization of the kink-like instabilities in the systems

with rigid-body rotation is somewhat known in the astro-

physical community45 but has not been actively studied in

relation with experiments. At the same time, this stabilizing

Coriolis effect could play an important role in modern exper-

imental devices (e.g., tokamaks, reversed field pinches etc.)

where plasma rotation is commonly observed.

As follows from our ideal MHD analysis, for a given

Mach number M> 5, the onset of the Parker instability

depends only on the value of normalized gradient of the equi-

librium magnetic field (pinch parameter h) but not on its mag-

nitude. This means that the instability can be obtained even

for infinitely small magnetic field. However, in this case, the

growth rate of the instability approaches zero, because the

growth rate scales with the minimized potential energy [Eq.

(32)] which itself scales as B2
z0 and thus x2 / Wmin / B2

z0.

Therefore, to observe the Parker instability in experiment, a

relatively small magnitude of the equilibrium magnetic field

is sufficient; in fact, it is just enough to have a field exceeding

the Earth’s magnetic field. Our analysis has been conducted

for isothermal motions in an isothermal plasma, as should be

appropriate for conditions realized in MPCX. If thermal con-

ductivity is decreased, this analysis likely provides a lower

bound on the Parker instability.

Our results suggest that the Parker instability can be

achieved in an experiment with controllable plasma flows,

such as MPCX. Simple estimates show that in order to reach

the Mach number of M¼ 6, one may have an argon plasma

with li¼ 40, electron temperature Te¼ 4 eV, and peak veloc-

ity of V0¼ 20 km/s. With an applied axial magnetic field of

B0¼ 4 Gauss, the total axial current required for instability is

Itotal¼ 1 kA; for a uniform distribution of current, this will

give a pinch parameter of h¼ 1. These parameters may soon

be achievable in the MPCX.
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